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Abstract. The ground state properties of the Heisenberg antiferromagnetic spin-4 chain 
with interactions varying as (distance)-' are investigated from finite cell calculations. The 
gap between the ground state and the first excited state as well as the end-to-end spin 
correlation function have been calculated for finite open chains up to 14 spins and 12 
spins respectively. Aided by first-order perturbation calculations near p = 0, we can 
extrapolate the gap in the thermodynamic limit, and we find that the gap vanishes for 
every p # 0. From the analysis of the spin correlation function we find that long-range 
order exists for p < 1 and does not exist for p > 2. The existence of long-range order in 
the range 1 < p < 2 remains an open question. 

1. Introduction 

It is of interest to study the effect of varying the range of interactions on the ground 
state properties of a quantum system. It is expected, especially in low dimensions, 
that a Hamiltonian with short-range interactions behaves differently from the corres- 
ponding infinite-range Hamiltonian (which corresponds generally to mean field). 

One of the most simple and non-trivial examples on which this effect has been 
studied is the one-dimensional spin-; antiferromagnetic chain, where one can vary 
the index p of the power law decay of the interactions with distance (Rabin 1980a, b, 
Drell et al 1976a, b). This model is described by the Hamiltonian 

i - j + l  1 
, Sisj 

i , j -  1 ,  ..., N l i  -11 
i # j  

where the spin components are the usual spin-; Pauli matrices: 

(2) 
S'=-( 1 1  O ) .  

2 0 -1 

Such a kind of power law decay of the spin-spin interactions occurs often in model 
Hamiltonians for magnetism in solid state physics or in continuum field theories 
transcribed onto a lattice. 

Before the recent study by Rabin (1980b) little was known on this model. The 
corresponding Ising model, where SiSj is restricted to SfSf in (l), has been investigated 
by Ruelle (1968) and Dyson (1969). They have proven that the model is disordered 

t Laboratoire associt au CNRS. 

0305-4470/82/082621+ 10$02.00 @ 1982 The Institute of Physics 2621 



2622 R Botet and R Jullien 

at all finite temperatures if p > 2, while long-range order persists at T # 0 if p < 2. 
Since, in all Ising models, long-range order occurs at T = 0, this result implies that 
T, = 0 for p > 2  while T, # 0 for p < 2. The sign factor (-l)i-’+l has no influence in 
the Ising case so that these results hold for both the ferromagnetic and the antifer- 
romagnetic cases. Dyson (1969) conjectured that these properties must extend to the 
Heisenberg ferromagnet, i.e. for (1) where the sign factor is replaced by -1. Rabin 
(1980b) extended the conjecture to the antiferromagnetic case. 

Rabin (1980b) has shown that the thermodynamic limit of (1) does not exist for 
p < 1 (the ground state energy per site diverges). However, in this range, the gap 
between the ground state and the first excited state is well defined and non-infinite. 
For p = 0, Rabin has also shown that the ground state corresponds to long-range 
antiferromagnetic order with an energy gap of 1. Then, applying in the general case 
p # 0 a real-space renormalisation group blocking procedure (Drell et a1 1976a, b, 
Jullien 1981, Pfeuty et a1 1982), he found that for p b 1.1 1 the system becomes gapless 
while for p B 1.85 long-range order vanishes. It is suggested that these approximate 
critical values of p correspond to effective transitions in the ground state at p = 1 and 
p = 2. These results imply a quite unusual behaviour for 1 < p  < 2 where long-range 
magnetic order persists together with a vanishing gap. Thus it appears to be useful 
to check these results by using a different approach. 

In this paper, we would like to make precise and complete the previous study of 
Rabin (1980b) by using the finite cell scaling method (Nightingale 1976, Sneddon 
1978). In certain circumstances, it has been shown that the blocking method and the 
finite cell scaling could give different results, in particular when a line of fixed points 
or an essential singularity is present (this has been observed in the spin-1 chain with 
uniaxial anisotropy (Jullien and Pfeuty 198 1) and in the Heisenberg-king chain 
(Spronken et a1 1981)). It is therefore very useful to contrast both methods when 
applied to the same Hamiltonian. We have calculated the gap between the ground 
state and the first excited state of (1) for finite chains of N spins (up to N = 14) as 
well as the end-to-end spin correlation function (up to N = 12) in the ground state. 
Aided by the analytical result obtained by first-order perturbation for small p, one 
can extrapolate the gap more easily to the infinite chain and we find that the extrapo- 
lated gap vanishes for all p # 0. This result, different from the result of Rabin in the 
range 0 < p < 1, can be understood when rendering the Hamiltonian asymptotically 
convergent in the thermodynamic limit. Concerning the asymptotic behaviour of the 
spin correlation functions, we confirm that long-range order exists for p < 1 and does 
not exist for p > 2. However no clear conclusion can be made in the range 1 < p  < 2. 
Finally we discuss the possibility of coexistence of long-range magnetic order together 
with a vanishing gap in the range 0 < p < 1 (and perhaps in the range 1 < p < 2). 

2. Principles of the finite cell calculations 

The principle of finite cell scaling is to calculate a given quantity for finite chains of 
N spins and then, by assuming a certain scaling hypothesis for the behaviour of this 
quantity with N, to extrapolate for N + CO. Here, we have computed the gap G(N, p )  
between the ground state and the first excited state of ( l ) ,  as well as the end-to-end 
spin correlation function at T = 0 defined as 
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where the brackets refer to the expectation value in the ground state and where the 
minus sign ensures that C(N, p) is a positive quantity for N even. We have restricted 
our calculations to even values of N. For N = 2 and N = 4 the calculations can be 
done analytically, and this provides a good check for the computations which have 
been performed by machine up to N = 14. 

The eigenstates of H can be classified according to the good quantum numbers 
which are the modulus of the total spin and the projection Sz of the total spin on the 
z axis: 

N 

Z'= Sf. (4) 
i = l  

We have observed that the ground state of the chain is always a singlet (Z' e 0), while 
the first excited state is a triplet containing the first excited state in the subspace 2' = 0 
and the ground states of the subspaces Z' = *l. It is thus sufficient to determine the 
two lowest eigenvalues of H in the subspace X' = 0. Further symmetries are useful: 
the spin reverse (or time reverse) symmetry T and the right-left symmetry along the 
chain direction cr. We have observed that when N/2 is even, the ground state is 
symmetric with respect to both transformations i.e. T = cr = +1, while the first excited 
state is antisymmetric, i.e. T = cr = -1. When N/2 is odd, the situation is reversed. It 
is thus sufficient to find the ground state in the two subspaces 2' = 0, cr = T = 1 and 
X'=O, u = ~ = - l .  To perform these calculations we have the Lanczos scheme 
(Whitehead and Watt 1978, Whitehead 1980). 

In the Lanczos algorithm one starts from a trial normalised vector 1,4~ on which 
we apply H: 

H$i =aiJ/i+Pi(CIz. ( 5 )  

a1 and P i  are determined unambiguously such that J12 must be normalised and 
orthogonal to +l. The procedure is repeated on Ij12 etc up to step ( n )  where 

H + n  = * * + Sn-2Gn-2 + ~ n - 1 + n - 1 +  an+n + P n 4 n t l .  (6 )  
I,4n+l is normalised and orthogonal to JI1, . . . , +bn. The fact that H is symmetric implies 
many simplifications: in particular, all the coefficients in (6) are zero except the a, p, y 
and furthermore pn = yn. Finally (6) reduces to 

H + n  =Pn-i+n-1+an+n + P n $ n + l .  (7) 
In the basis {&}, H is represented by a tridiagonal matrix. At each step the tridiagonal 
matrix is determined and diagonalised by standard subroutine. 

One can observe that after about 15 to 20 Lanczos steps the ground state energy 
is obtained within lo-' accuracy. 

Here the two lowest eigenstates are determined by using the following trial starting 
vectors 

(8) 
where T = +1 corresponds to the ground state and T = -1 to the first excited state for 
N/2 even (and the opposite for N/2 odd). For the largest cell reached, N = 14, the 
subspace is of dimensionality 3432, so that the Lanczos procedure replaces, in principle, 
the direct diagonalisation of a 3432x3432 matrix by a diagonalisation of a 20x20 
tridiagonal matrix. The limitation then occurs when performing the scalar products 
of such large vectors. 

- 
&=(I+-+ * .  .+-)+TI-+-+. . * -+))/42 
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The Lanczos algorithm is very well adapted for the determination of the eigen- 
values. To compute the eigenvectors one needs much more computation time and 
space, so that for the end-to-end correlation function we have performed the calcula- 
tions up to N = 12 only. 

3. Results for the gap, comparison with first-order perturbation near p = 0 

The results for the gap are given in figure 1 as a plot of G ( N ,  p) against p for different 
sizes up to N = 14. For N = 2, the gap is trivially equal to one, independent of p. 
For larger N, the gap starts from 1 for p = 0 and then decreases monotonically with 
increasing p. The problem is how to estimate the limiting curve G"(p) from these 
finite cell results. For large p values we recover that the gap tends to zero as N-' ,  
as is well known exactly for short-range interactions (des Cloizeaux and Pearson 
1962). When looking at our results it is tempting to extend this conclusion for every 
p > 1. Our results can be very well fitted by polynomials in powers of N-' for p > 1; 
however, these fits are not very well converging especially for 1 =s p 6 2. More dramati- 
cally, for small p values it is very difficult to extrapolate our results, and either a 
vanishing or a non-vanishing gap can be obtained depending on the choice of N 
dependence adopted to fit the results. Fortunately, for small p values, a good approxi- 
mation for the gap is given from the first-order perturbation calculation near p = 0, 
which provides good suggestions for fitting. 

L 

-4 

0 1.0 2.0 
P 

Figure 1. Plot of the gap G(N, p )  as a function of p for sizes up to N = 14. 

For p = 0, Rabin has shown that the Hamiltonian can be conveniently written as 

H = $x2 - x,' - xi + Z N  (9) 

where X is the sum of all the spins of the chain and where Xe(Xo) is the sum over the 
even (odd) sites only, From that form it can be easily concluded that the p = 0 ground 
state 4o corresponds to 8 = 0 and to 8, = X, = -&, while the p = 0 first excited state 
q51 corresponds to C = l ,  Z,=2,=&. From these states one can calculate the 
approximate gap to first order defined as 

G0W, P )  = (4iIHI41>-<4oIHI4o>. (10) 

In this approximate expression the dependence in p comes only from H and not from 
do and which have been taken as for p = 0. We can generalise the calculation of 
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Rabin to evaluate (&,lHlq!jO) and (i$11Hlq51). We get the following expression for 
GO(N, P I :  

Go(N, p )  = N-'[F(N, p )  - 2-'F($N, p ) ]  

F(N,  P )  = lN-l(p>-N-l~N-l(P - 1) 

5 7 V ( ~ ) = 1 + 2 - ~ + .  . .+N-'. (13) 

(11) 

(12) 

where 

and l N ( p )  is the truncated zeta function 

When comparing with our numerical results, we find that Go(N,p) is a very good 
approximation for G(N,p)  in a large range of N and p values. Using the large N 
asymptotic expansion of &&I), 

where l ( p )  is the Riemann zeta function and where C ( p )  is a p-dependent positive 
numerical constant, one can derive the following asymptotic large-N expansion of 
G0W, P I :  

for p < 1, 
1 1 

2(1 - p ) ( 2 - p ) - s + o ( $ ) l  

N 

2p-3  
for 1 < p  <2,  

G o ( N , p ) - F ( l - $ )  C(P) -v(l-&) 

for p > 2. 
+'[ 1 1 

NP 2(1 - ~ ) ( 2 - p ) + s + ~ ( $ ) ]  

Thus Go tends to zero as N-' when p > 1, while Go tends to zero as N-' when p < 1. 
For p = 1 and p = 2, logarithmic terms appear. For p = 1, Go behaves as (In N)/N, 
and for p = 2, Go behaves as N-' with a leading term in (In N)/N2. Even if the 
convergence is slower for p < 1, Go(N, p )  tends to zero everywhere for p # 0. Thus 
the asymptotic limit of the function Go(N, p )  is discontinuous at p = 0 since Go(N, 0) = 
1 for all N. 

In order to verify if these conclusions hold for our calculated gap, especially for 
small p values, we have reported the difference G - Go divided by p 2  as a function 
of 1/N in figure 2 for several small values of p .  All the curves exhibit a maximum 
near N - 12 and are very well fitted by a polynomial in N-' without a constant term. 
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Figure 2. Plot of the difference G(N, p )  - Go(N, p) divided by p 2 ,  where Go(N, p) is the 
analytical expression given in the text, as a function of 1/N for several values of p: 
p=O.O5,0.1,0.2, 0.4. 

We conclude that for small p ,  G has the same asymptotic form in N - P  as Go, only 
the leading term in N-' is changed by corrections of order or smaller than p 2  for 
small p .  In particular, G exhibits the same discontinuity at p = 0. 

The analytical study of Go(N, p )  provides some ideas for the asymptotic behaviour 
of the real gap. In table 1 we have presented the results of some fits which show that 
taking into account terms in N - P  in the expansion of G(N, p )  gives better results than 
considering integer powers of N-' alone. We have considered four successive sizes 
and, assuming an expansion of G ( N , p )  containing a constant term G" and other 
terms in integer powers of N-' ,  with or without a term in N-P,  we have reported in 
each case the result for G". When increasing the set of N values chosen for the fit, 

Table 1. 

Range of 
P Form of the fit N values G* 

A B C  
N N 2  N 3  

G m  i --+ -i- 

0.6 
A B C  

N N 2  
G" +p+-i - 

A B C  
N N 2  N 3  

G " i - i - i -  

1.4 
A B C  
N N 

G"+--+--+--j: 

A B C  
N N 2  N 3  

G " i - - i - i -  

2.4 
A B  C 
N N 2  N2.4 G"i--+--+- 

4 to 10 
6 to 12 
8 to 14 

4 to 10 
6 to 12 
8 to 14 

4 to 10 
6 to 12 
8 to 14 

4 to 10 
6 to 12 
8 to 14 

4 to 10 
6 to 12 
8 to 14 

4 to 10 
6 to 12 
8 to 14 

0.247 
0.206 
0.180 

-0.112 
-0.070 
-0.044 

0.126 
0.087 
0.063 

0.064 
0.027 
0.011 

0.059 
0.046 
0.035 

0.052 
0.041 
0.030 
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one can observe that G” tends more quickly to zero for the fits which include the 
term in N P P .  

In conclusion of this analysis, one can say that the gap tends to zero as N-’ for 
all p values greater than one, suggesting that the ground state is the bottom of a 
continuum of states with a dynamical exponent z equal to one (the dynamical exponent 
being defined as G - N-’ when N + 00). Considering the classical 2D equivalent model 
of this quantum system, this model would be ‘critical’ for all p > 1 .  In the case p < 1, 
we must be more careful since the Hamiltonian has no thermodynamic limit. In that 
case, the energy per site diverges as NIpP.  It is thus more convenient to consider a 
modified Hamiltonian 

H’ = H/”-P (16) 
which has a well defined thermodynamic limit (in the special case p = 1, one must 
consider H’ = H/ln N ) .  

Since G tends to zero as N-’ for p < 1 ,  the corresponding gap G’ for H’ tends 
to zero as N - l .  Thus one can conclude that the general result z = 1 is valid for every 
value of p ,  but when p < 1, H must be replaced by the more realistic Hamiltonian 
H’ which has a well defined thermodynamic limit, and which could accept a two- 
dimensional classical equivalent (note that the discontinuity at p = 0 becomes meaning- 
less when considering H’). 

4. Results for the end-to-end correlation function 

The numerical results for the end-to-end correlation function in the ground state are 
given in figure 3 where we have plotted C = -3(S;Sfv) for N = 4 , 6 , .  . , 12 as a 
function of p .  For N = 2, C is trivially equal to 2, independent of p .  For p = 0, we 
have precisely recovered the exact result of Rabin: 

C ( N ,  0 ) = - 3 ( S f S f v ) = : +  1 /N.  (17) 

>*Q& 
0 1.0 2.0 

P 

Figure 3. Plot of the end-to-end correlation function C(N, p) = -3(SfS;) as a function 
of p for sizes up to N = 12. The extrapolations to N = 03 obtained by fitting by a polynomial 
in N-’ the curves up to size N, Cz ( p ) ,  are given by the broken lines for N = 8, 10, 12. 
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When p increases, C(N,  p )  decreases monotonically. Here also the problem is how 
to estimate the limiting curve when N + m .  For p + m  one must recover the exact 
result, which is that C tends to zero as N - l .  It is thus tempting to fit C by polynomials 
in N-*  in the whole range of p values, since this procedure gives the correct results 
in the limiting cases p = 0 and p =CO. Here, we have applied a procedure already 
adopted in another case (Spronken et al 1981) which consists in comparing all the 
results from size 2 up to size N by fitting with a polynomial of degree N / 2  - 1 in N-':  

C ( N , p ) = C E ( p ) + A l / N + .  . . + A N / ~ - I / N ~ / ~ - ' .  (18) 
This method gives the following estimation for Cg ( p ) :  

with 

M 
Q$= n 

M'=I ..... NJ2 M -M'  
M'M 

The curves giving the numerical results for Cg ( p ) ,  N = 8 ,  10, 12 are given by the 
broken curves of figure 3. Obviously for p = 0 the exact result 4 is recovered exactly. 
The procedure converges very well in the whole range p < 1, suggesting strongly that 
the result $ remains valid up to p = 1. Also for p > 2 the procedure converges very 
well and suggests that the correlation functions tend to zero, i.e. that there is no 
long-range order. 

In the range 1 < p < 2 we cannot conclude so clearly. When looking at the broken 
curves of figure 3, one could conclude a non-zero correlation function varying smoothly 
from 4 to 0 when p is varying from 1 to 2 .  However one could have tried other fits, 
in particular by forcing C" = 0 and a power law decay N-" ; then we would get a 
continuously varying exponent from CY = 0 for p = 1 to (Y = 1 for p = 2 .  However we 
were not able to find such fits converging better than those presented in figure 3. 
Note that we have here no help from any approximate analytical expression for C: 
the first-order perturbation near p = 0 gives no more than expression (17) which 
becomes completely wrong for p > 1. 

From this study, we conclude that long-range order exists for p < 1 and vanishes 
for p > 2. In the range 1 < p < 2 our analysis suggests that the long-range order persists 
with a continuous decrease of the magnetisation up to p = 2; howver ,  it cannot'be 
excluded that instead the long-range order does not exist, and that we have here a 
'line of fixed points' with a continuously varying exponent for the power law decay 
of the correlation functions. In this last hypothesis the conclusion of Rabin concerning 
the disappearance of long-range order at p = 2 could be wrong and the transition at 
p = 2 would be more subtle (perhaps an essential singularity terminating a line of 
fixed points). 

5. Conclusion 

Our calculations confirm the previous conjecture of Rabin which predicted a change 
in the long-range properties at p = 2 .  However some differences with his study must 
be noticed. First, we found that the gap vanishes everywhere and not only for p > 1. 
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When replacing H by H' = NP-'H for p < 1, we find that the dynamical exponent 
is equal to one for every value of p .  Moreover, we are not completely sure that 
long-range order exists in the range 1 < p  < 2, and further studies are needed to know 
if there is rather a line of fixed points in that range. The existence of long-range order 
while there is no gap in the range 0 < p  < 1, and perhaps up to p = 2, is a quite unusual 
situation which requires some further discussion of our results. It is very difficult to 
prove that there is really no gap. In the thermodynamic limit, the system could have 
a ground state with a finite degeneracy well separated from the continuum of excited 
levels by a finite gap, and we may have picked up only two components of this multiplet 
by our method. In fact, it is practically impossible to rule out this hypothesis com- 
pletely: it would have been necessary to perform the same study for all the excited 
levels. However, some arguments are in favour of a gapless continuum near the 
ground state. First, in the limit p = 0 the Hamiltonian H' = H / N  has a continuum of 
states corresponding to all possible values of Z, Z,, 2, near Z = 0, Z, = Z, = N / 4 .  
Second, the gap vanishes as N-' and not exponentially as generally in the case of a 
finite asymptotic degeneracy. 

This apparent anomalous situation must be explained by the presence of long-range 
interactions. Let us imagine a two-dimensional equivalent classical model. This model 
would be highly anisotropic with long-range interactions varying as (distance)-' in the 
original direction (space direction) and with regular short-range next-neighbour inter- 
actibns in the perpendicular direction (time direction). The gap of the quantum model 
corresponds to the inverse of the coherence length in the time direction. For sufficiently 
long-range interactions one can imagine that the long-range order is induced in the 
space direction, while the spins remain uncorrelated at long distance in the time 
direction, as traduced by the vanishing gap. 

To conclude, we would say that our calculations confirm some points and complete 
the previous study by Rabin, but demand some further investigations and especially 
exact analytical results, to make precise the nature of the ground state for 1 < p  < 2. 
Moreover, this study shows that finite cell methods can be very limited in presence 
of long-range interactions. If there is no support coming from an analytical study the 
extrapolation to the infinite system can become very hard. 
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